Highly efficient blue organic light-emitting diodes using quantum well-like multiple emissive layer structure
نویسندگان
چکیده
In this study, the properties of blue organic light-emitting diodes (OLEDs), employing quantum well-like structure (QWS) that includes four different blue emissive materials of 4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl (DPVBi), 9,10-di(naphth-2-yl)anthracene (ADN), 2-(N,N-diphenyl-amino)-6-[4-(N,N-diphenyl amine)styryl]naphthalene (DPASN), and bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato) aluminum (BAlq), were investigated. Conventional QWS blue OLEDs composed of multiple emissive layers and charge blocking layer with lower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy level, and devices with triple emissive layers for more significant hole-electron recombination and a wider region for exciton generation were designed. The properties of triple emissive layered blue OLEDs with the structure of indium tin oxide (ITO) /N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) (700 Ǻ)/X (100 Ǻ)/BAlq (100 Ǻ)/X (100 Ǻ)/4,7-diphenyl-1,10-phenanthroline (Bphen) (300 Ǻ)/lithium quinolate (Liq) (20 Ǻ)/aluminum (Al) (1,200 Ǻ) (X = DPVBi, ADN, DPASN) were examined. HOMO-LUMO energy levels of DPVBi, ADN, DPASN, and BAlq are 2.8 to 5.9, 2.6 to 5.6, 2.3 to 5.2, and 2.9 to 5.9 eV, respectively. The OLEDs with DPASN/BAlq/DPASN QWS with maximum luminous efficiency of 5.32 cd/A was achieved at 3.5 V.
منابع مشابه
Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells
Related Articles Enhanced life time and suppressed efficiency roll-off in phosphorescent organic light-emitting diodes with multiple quantum well structures AIP Advances 2, 012117 (2012) Metal-assisted electroless fabrication of nanoporous p-GaN for increasing the light extraction efficiency of light emitting diodes AIP Advances 2, 012109 (2012) Work-function-tuned multilayer graphene as curren...
متن کاملUltrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum ...
متن کاملInfluences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)
In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...
متن کاملHighly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantl...
متن کاملNew n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines.
The synthesis, properties, and electroluminescent device applications of a series of five new diphenylanthrazoline molecules 1a-1e are reported. Compounds 1b, 1c, and 1d crystallized in the monoclinic system with the space groups P2(1)/c, C2/c, and P2(1)/c, respectively, revealing highly planar molecules. Diphenylanthrazolines 1a-1e have a formal reduction potential in the range -1.39 to -1.58 ...
متن کامل